Search

A few weeks ago, we spoke with Sonu Khanal, hydrologist at FutureWater, to follow up on the Roadside Spring Protection to Improve Water Security’ project (RoSPRo). Future Water, a research and consulting organisation that combines scientific research with practical solutions for water management globaly, is leading the technical component in the RoSPro project in two municipalities of Dhankuta and Chhathar Jorpati Rural in the Dhankuta district of Nepal. The project addresses the importance of springs for the livelihoods of mountain communities, while simultaneously improving the road infrastructure, recognising that roads and springs significantly impact each other.

Economic developments and population growth are resulting in more roads for commuters and trade. The expansion of the road network causes the disruption of the original natural springs that become roadside springs, due to the implementation of infrastructure.

Spring water is vital for nearly 100 million people living in the hills and mountains, such as in Nepal and the Himalayas, who rely on these springs for drinking water since river water in these regions is often polluted and undrinkable.

The project, which began last June, is vital for the local communities, says Khanal who supervises the technical aspects of the project. “We aim to address the widespread issue of drying springs and severe water shortages. To do this effectively, we first need to identify their locations and recharge areas, understand how springs function, and monitor their flow patterns and amounts”.

Integrating road planning

Khanal emphasizes the importance of integrating road development with water flow management in hilly and mountainous areas. “In this project, we aim to highlight the crucial role of springs in the water management of the Himalayas. Poorly managed springs are often blamed on climate change, but effective management practices can greatly enhance water availability and sustainability. Once a spring’s flow is disrupted, restoring it is nearly impossible. Therefore, meticulous planning is essential to ensure that road construction does not harm these vital water sources.”

Advanced methods

FutureWater has been using advanced methods and tools to map the behaviour of watersheds and springs and provide advice on managing spring water, considering social and economic factors, especially for mountain areas. “The overall objective is to help stakeholders in Nepal to develop science-informed policies for road and water management to promote ‘water security for all’. To achieve this, we collaborated with local communities, municipalities, and regional and national stakeholders to harness their traditional knowledge and tailor the approach to the local context and needs.”

Consortium partners

Since 2014, MetaMeta has promoted using roads for improved water management and climate resilience, beyond just connectivity. This approach integrates roads into the landscape, reduces water-related damage, and ensures year-round accessibility. In mountainous regions, MetaMeta has explored how roads can protect springs and enhance the landscape, leading to a national guideline by the Department of Local Infrastructures (DOLI).

Partnering with FutureWater and ICIMOD, MetaMeta advanced this project. For over two decades, FutureWater has worked on integrated water resources management, climate change impacts, and disaster risk management in Nepal and Asia, offering expertise in quantitative methods, simulation models, GIS, and satellite observations. FutureWater’s toolkits, tailored to local needs, are publicly available. ICIMOD, with extensive experience in springshed management, brings strong institutional partnerships to the project. Khanal explained: “We’re collaborating with DOLI, responsible for all road activities in Nepal, to address the crucial but overlooked issue of springs, vital for mountain communities’ livelihoods, providing drinking water, education support, and enabling small-scale irrigation.” This collaboration leverages the expertise of multiple organizations to emphasize the critical role of springs in sustaining mountain communities.

Digital twins

Khanal explains that in this project, FutureWater is setting up ‘digital twins’ for the springs and watershed using ground-based and satellite-based information. “A digital twin model helps us to understand the behaviour of specific springs and watersheds mathematically. It will help us to identify the sources of water and recharge zones, and calculate the water amount and flow pattern in the watershed.”
The digital twin, combined with a robust decision support system, will help stakeholders to identify the costs and benefits of various interventions needed to restore springs and manage watersheds effectively. Khanal emphasises that this approach is unique because “these digital toolkits will help stakeholders make informed decisions about water management.”

The project will first be piloted on a small scale, with the involvement of the local community and relevant stakeholders to ensure effective implementation. To this end, four critical springs were identified together with the local community. Several data collection expeditions and field visits have been conducted to collect data and information on these springs. The field data will help tailor the digital twins to the local climate and context.
“To facilitate the data collection, monitoring, surveys, focus group discussions, and project implementation, a satellite office has been set up in the region by the consortium lead. The consortium is also using local knowledge by engaging the community and local consultants.”

Approach and phase

“We’re now in the pilot phase, aiming at pre-monsoon interventions,“ Khanal says, confident that the project will be a success. “Protecting springs near roads by constructing Gabion walls and French mattresses is essential to safeguard water outlets. Gabion walls are constructed by assembling wire mesh baskets, filling them with stones, and stacking them to control erosion and retain soil. French mattresses are drainage structures that stabilise soft soils; they are built by excavating the area, laying geotextile fabric, filling it with stones, wrapping the fabric over the stones, and securing the structure. Both methods improve drainage and enhance the stability of water outlets, protecting them from erosion and damage. We’re also building tanks to collect and store spring water, ensuring a consistent supply despite natural fluctuations in water availability.

Goals

Khanal concludes that ideally, “with persistent efforts, we will have built sufficient trust within a year for the community to actively participate in co-designing the process. Immediate benefits, such as a consistent water supply from newly built tanks, are evident. But long-term benefits like increased water availability due to roadside spring protection measures, will take several years to materialise. We are transparent with the community about this timeline, ensuring they understand that while some impacts are immediate, others require patience and time. The project aims for scalability across the Himalayas and similar regions, supported by partnerships with organisations like ICIMOD and potential funding from other entities.

Innovation in progress series

During the Partners for Water 2022 – 2027 programme, several projects that received the Partners for Water subsidy will be followed from start to finish. Over the next few years, they will take you with them on their transformative journey. You’ll be able to gain insights into their promising solutions, innovative processes and collaborations with local partners, as well as their struggles, challenges and valuable lessons learned. RoSPro is part of the innovation in progress series. Click on the button below to find out what was discussed during the first interview.

 

Introduction article RoSPro

How can we revolutionise Ghanaian horticulture? SOSIA+ aims to do so by providing farmers with a new perspective on growing vegetables through game-changing technologies.

Amid the bustling atmosphere of Cafe de Huiskamer at The Hague central station, we sit down with SOSIA+ project members Lindsey Schwidder, Benny Ampong, Samuel Kwame Darbah, and Prince Baffour to discuss their collaborative efforts on this innovative pilot project.

Lindsey is the Project Manager at the Innovation & Impact Centre at Delft University of Technology and the project leader of the SOSIA+ project. As the Technical Manager at Holland Greentech, Benny serves as the SOSIA+ pilot irrigation expert in Ghana. Both Samuel and Prince are SOSIA+ training facilitators at the Kwadaso Agricultural College in Ghana, with Samuel also being the national coordinator of the ACHI Programme. This programme is part of the Dutch Combi Track approach, an initiative by the Dutch government where the government and businesses collaborate on projects in emerging markets. In Ghana, it supports better skills development for the younger generation of farmers.

The SOSIA+ project, funded by Partners for Water, is a collaborative effort conducted in Ghana by a consortium consisting of TU Delft, FutureWater, Holland Greentech and TAHMO. This pilot project aims to make the use of local weather data and climate-smart irrigation systems accessible for small-scale commercial farmers. By doing so, it seeks to improve water efficiency and crop yields, offering a renewed perspective on agriculture to the Ghanaian youth and farmers. Read our SOSIA+ introduction article to learn more about the project.

New technologies like SOSIA+’s irrigation systems are a game changer for the Ghanaian agricultural sector

Samuel Kwame Darbah

Transforming Ghanaian horticulture

“New technologies like SOSIA+’s irrigation systems are a game changer for the Ghanaian agricultural sector,” says Samuel. He explains: “Many farmers are unaware that they don’t need to carry buckets of water or use inefficient sprinklers to irrigate their crops. By teaching the application of SOSIA+’s technology at our college and introducing students to role models like young agronomists from Holland Greentech, young farmers are becoming aware that farming can be an economically viable practice; its popularity is increasing.” Prince adds: “This has huge implications for the current unemployment challenges Ghana is facing and for improving our self-sufficiency in food production.”

 

Promising harvest

“It’s almost time for the second harvest,” says Benny, “and most farmers are very hopeful because they already see more fruit on their plants compared to when they were not using the system.” Lindsey mentions: “During the first harvest, the farmers encountered a lot of unexpected rain, which resulted in not having to use the irrigation system as much as anticipated. This will be the first comparable harvest data.” “That season was still very useful, though,” adds Benny, “because the farmers got the chance to develop their skills in using the irrigation system.”

 

Farmers’ scepticism

“It took a while for the farmers to have faith in the drip irrigation system,” says Prince. “Generally speaking, Ghanaians can be quite sceptical when it comes to adopting new practices, and they like to see ‘proof’ first, instead of pioneering new technologies.” Samuel explains how they anticipated this: “Only farmers who already had a serious interest in improving their farming practices to become economically more viable were chosen for the pilot project. Additionally, both Holland Greentech and Kwadaso Agricultural College provide sufficient support to the participating farmers. We built a trustworthy relationship with them and truly take into account their worries, needs, and wishes.”

 

Understanding the farmers’ context

“To include the farmers’ needs, you need to have boots on the ground and be open to adapting according to their feedback,” says Benny. “One unexpected feedback outcome was the farmers’ liking of the water meter, which we initially added to collect water usage data. It turns out that the farmers also use it to monitor their farm managers’ practices remotely. Now, Holland Greentech provides the water meter as an additional irrigation tool.” Lindsey adds: “To make a project like this work, it is important to adjust to the local norms and needs. As a Dutch person, I’m unable to truly comprehend what exactly that means for the Ghanaian context. That is why it is not only valuable but also essential to work with local partners.”

 

Scaling up

A year and a half in, the SOSIA+ irrigation tool is becoming more widely known throughout Ghana. “People from all over the country apply to do the agriculture course at our college because we teach about this efficient technology and its practical application. There is more demand than we can meet at the moment,” says Samuel. Lindsey adds: “The collaboration with Kwadaso Agricultural College helps to widen the scope of the SOSIA+ project. Soon, we will expand to other colleges as well to teach new agriculturists to apply technologies that support farming to become a sustainable and economically viable business.”

Innovation in progress series

During the Partners for Water 2022 – 2027 programme, several projects that received the Partners for Water subsidy will be followed from start to finish. Over the next few years, they will take you with them on their transformative journey. You’ll be able to gain insights into their promising solutions, innovative processes and collaborations with local partners, as well as their struggles, challenges and valuable lessons learned. Stay tuned and follow their journey through the Partners for Water website and our LinkedIn page!

The countries of Central America struggle with so-called red tides, or harmful algal blooms. This not only threatens their rich ecosystems but also local economies. The MAReS project, funded by Partners for Water, addresses this by developing a scalable service for detecting and monitoring harmful algal blooms using satellite data and citizen science, and considering the needs of end users. Consortium partners Dr. Andrea Suárez Serrano and Dr. Alexander Kaune discuss the innovative MAReS project with us.

Meet the team

Andrea, the general coordinator of the Centro de Recursos Hídricos para Centroamérica y el Caribe (HIDROCEC) at the Universidad Nacional (UNA), Costa Rica, has led various research projects on surface water quality, drinking water and coastal zones. In the MAReS project, the university validates the gathered data and provides scientific and technical support.

Alexander, who holds a PhD in Water Resources Management and has extensive experience in international hydrological and water resources projects, is an independent expert for Kaune Engineering and Science. He coordinates projects, co-develops services, and liaises between project partners and stakeholders.

 

MAReS

Water Insight, the Universidad Nacional (UNA), Costa Rica, and Kaune Engineering and Science are involved in a collaborative project related to water quality monitoring and management. The project aims to create a scalable service that provides near-real-time spatial insights into the location of harmful algal blooms (HABs), also known as ‘red tides.’ This project addresses critical issues affecting local economic sectors such as seafood farms and eco-tourism which depend on a healthy sea environment to be sustainable. Eventually, MAReS will deliver timely alert messages and near-real-time maps indicating the risk levels of red tides occurring in the Costa Rican Pacific, aiding in mitigation efforts.

Efficient data measurements

“We use satellite images as the basis of our tool,” says Alexander. “This results in a service that is affordable and scalable”. Alexander explains how the consortium validates the measurements: “To ensure the satellite data matches reality, we validate the measurements with data from Water Insight Spectrometers (WISPstations) placed in the ocean. These Water Insight Spectrometers determine the bio-physical water quality through high-frequency optical measurements of the surface water.” During the pilot project, Andrea’s team at HIDROCEC-UNA validates the data from satellite and  WISPstation through sea water sampling to obtain the concentration of different types of phytoplankton that can produce red tides. Andrea says: “We also receive daily images of the colour of the surface water through a citizen science approach, where people already working in the sea share images with us through an app. In this way, we have successfully managed to obtain data on red tides in the Costa Rican Pacific from four information sources: satellite images, optical instruments, water sampling and citizen science”.

Andrea adds, “The interdisciplinary and transdisciplinary work of the MAReS project is a unique and innovative approach. From an academic perspective, the project is very useful as we work with communities dependent on marine resources. Knowing more about the occurrence and detection of red tides is fundamental in developing early warning mechanisms for these communities as well as for tourism, fishing and the environment.”

Problem-driven innovation

“Initially, we knew we wanted to work on water quality using satellite data, but we were uncertain about our specific focus,” says Alexander. “We decided to consult with individuals who face real challenges in water quality, aiming to respond to a need and develop a solution with direct impact.” From previous research projects, Andrea had two potential beneficiaries: Península Papagayo, a service company coordinating various activities and services for eco-tourism in the North Pacific Region of Costa Rica, and Martec-AquaFoods, a mariculture company producing fish in the ocean. “We met with them to explore how our expertise could meet their needs. They immediately identified a critical need to solve the problem of red tides.”

 

Designing for the end user

“Our end users want a service that timely alerts and maps potential harmful algal blooms and shows their risk level. They also want to see the variables used to generate this indicator, allowing them to compare with their own observations to better understand these events,” says Alexander. To meet these needs, the consortia have regular meetings and feedback workshops with the end users. Alexander states: “For the tool to be useful, the end users need to understand the information it provides. Only they can tell us if it has added value and what should be changed to improve information delivery.”

“In the beginning, we had to push for a participative approach, employees are busy with their own daily activities. We convinced the management to involve everyone in the process, as those on the ground dealing with harmful algal blooms daily know best what is useful for the tool,” says Alexander. Their effort to include the whole team paid off. “We had successful meetings with the employees who go out on the ocean for tourist tours and daily patrols. They were very critical and provided us with excellent feedback, but also eager to help. From them, we are receiving daily images of the colour of the surface water, that can help us to calibrate and validate our model. That’s exactly what we need to improve our tool.”

 

Scaling up

“The opportunity to scale up this type of project is vast,” says Andrea. “The Central American isthmus, bordered by the Pacific Ocean and the Caribbean Sea, requires accurate information for effective decision-making regarding marine resources, which are crucial to the region’s economy. Additionally, our technology could be applied to lakes and rivers that supply water to communities, where monitoring and detecting harmful algae is essential.” Alexander adds, “As long as we can access satellite data, we can monitor the water quality in large areas without needing to take continuous and expensive water samples and provide our affordable service to customers in those areas as well.”

To read a full introduction to the MAReS project, read the first interview here.

Innovation in progress series

During the Partners for Water 2022 – 2027 programme, several projects that received the Partners for Water subsidy will be followed from start to finish. Over the next few years, they will take you with them on their transformative journey. You’ll be able to gain insights into their promising solutions, innovative processes and collaborations with local partners, as well as their struggles, challenges and valuable lessons learned. Stay tuned and follow their journey through the Partners for Water website and our LinkedIn page!

Amidst the global challenge of climate change, agricultural regions like Vietnam’s Mekong Delta stand at the intersection of high productivity and significant vulnerability. The delta, home to over 18 million people and contributing more than 50% of Vietnam’s rice production, plays a vital role in ensuring food security across Asia and beyond. However, rising sea levels, excessive groundwater extraction, and saltwater intrusion threaten its survival. In response, a coalition of Vietnamese and Dutch experts have established the Mekong Salt Lab, dedicated to helping farmers in the Tra Vinh Province adapt to increasing droughts and salinization. Funded by Partners of Waters, we shed light on this ongoing innovation through a series of interviews. In our first episode, Gregor Van Essen and Bich Tran (Bica) update us on the current challenges and forthcoming steps.

 

Image: Mekong Salt Lab – Location of Tra Vinh Province in the Mekong Delta, Vietnam

About Salt Lab

Salt Lab addresses the impact of saline intrusion on farmers’ livelihoods in Tra Vinh Province, Vietnam. The project tackles issues such as reduced crop and fish yields, scarcity of fresh water for irrigation and household use, and the socio-economic consequences of salinity. It provides practical solutions and training through a Centre of Expertise, such as blended learning platforms, hydroponics, water treatment, and constructed wetlands. Adopting Farmer-to-Farmer and Public-Private Partnership models, Salt Lab will initially implement and integrate seven promising adaptive and scalable interventions, enhancing resilience and sustainable agriculture in the Mekong Delta. These are the 7 solutions part of the pilot project:

  • Hydroponics: an open-field, low cost, and low-tech hydroponics system designed to grow crops in saline-affected areas.
  • Freshwater Collection and Retention: techniques such as water bags, retention ponds, and lining irrigation canals to maximise availability of freshwater
  • Water and Wastewater Treatment: innovative nanofiltration methods using hollow fibre (HF) membrane modules for treating polluted water sources efficiently and sustainably.
  • Constructed Wetlands: artificial wetlands at the farm level to retain fresh water, treat polluted water, and promote groundwater infiltration.
  • Salinity Data Farming Platform & App: a unique platform and mobile app that provides real-time salinity data, helping farmers make informed decisions.
  • Asia Raincraft: a serious gaming-based approach for community and stakeholder participation, fostering collaboration in addressing water and climate adaptation.
  • Salinity Blended Learning Programme: equips farmers with practical knowledge about salinity and how they can respond or adapt to it.

Project team

The Mekong Salt Lab project is managed by a team of four members, including Gregor van Essen from The Water Agency and Bich Tran from Tra Vinh University, Vietnam. Gregor, as project director, oversees strategic operations and engages with key stakeholders like Partners for Water and the Dutch embassy. With over two decades of experience in the Mekong Delta, Bica, responsible for operational models, is deeply committed to enhancing farmers’ livelihoods in the region.

Empowering farmers: the crucial role of Mekong Salt Lab

Vietnam faces severe water deficits, worsened by intense droughts. During extreme dry seasons, the lack of freshwater forces many farmers to abandon their crops, a situation worsened by rising salinity levels. Farmers often lack the practical support needed to combat salinization. While they witness the negative impacts, such as failed crops, they lack the data, tools, and knowledge to respond effectively:

  • Practical salinity data: Farmers need timely and useful data to assess the quality of various water sources and monitor changes in salinity levels over time.
  • Practical knowledge and tools: Farmers require practical knowledge and tools to adapt to salinity, including methods for freshwater retention, water treatment, and the cultivation of salt-tolerant crops.
  • Actionable and affordable support: Farmers need support and solutions that are both practical and affordable.

The services of Mekong Salt Lab are specifically targeting these gaps and the urgency of doing this for farmers cannot be overstated. Gregor emphasises its significance, stating, “For Mekong farmers, this project is not a nice-to-have; it is a matter of survival.” Despite the challenges, engaging local farmers in education and changing their practices is a formidable task. Bica underscores the importance of patience and cultural understanding, noting, “We must listen to local farmers and adjust our model to meet their needs.” Experimenting and upscaling present significant challenges during the initial phase, making the role of the Salt Lab crucial in addressing these issues and ensuring the sustainability of local agriculture.

Consortium Partners

The Mekong Salt Lab project thrives through the collaboration of a diverse consortium of Dutch and Vietnamese partners, including The Water Agency, Tra Vinh University, Kim Delta, The Salt Doctors, Saxion University, HZ University, SkillEd, and Acacia Water. Each partner brings specialised expertise in areas such as hydroponics, freshwater retention, saline agriculture, soil management, blended learning, stakeholder engagement, aquaculture, and wastewater treatment. Co-funded by the Partners for Water programme, this consortium benefits from regular guidance and oversight. As Gregor stated, “The collaboration with Partners for Water goes beyond funding. They connect us with other initiatives and partners in the Mekong Delta that can strengthen our project” This partnership aims to create sustainable water solutions tailored to the Mekong Delta’s needs.

Collaborating with local partners

Working closely with local partners is indispensable for the success of the Mekong Salt Lab project. Through comprehensive needs and gap analyses, the team ensures that their solutions align with local realities. “We’ve consulted local authorities and farmers extensively during the proposal phase to understand their needs and explore potential solutions,” explains Bica. Engaging influential “champion farmers” has proven pivotal. “We’ve carefully selected farmers who can effectively represent the issues we’re addressing and actively contribute to the project,” notes Bica.

Currently, two champion farmers are piloting integrated systems that include water collection and retention for agricultural activities, water treatment for household use, vertical hydroponics, and deep-water hydroponics to address salinity and water scarcity. The challenge lies in adapting these Dutch systems to the local context and ensuring the farmers learn how to operate them effectively. “We need to educate these farmers thoroughly while determining the best practices for them. This will help us develop a general approach for broader implementation of these systems”.

The interest among local farmers and government officials is evident. The local government, having already visited three times to assess the project’s progress, underscores their commitment and enthusiasm. The governments of the neighbouring provinces of Soc Trang and Ben Tre have also shown interest. By leveraging local expertise and fostering continuous dialogue, the project is well-positioned to achieve long-term success and make a significant impact on the community.

In the field and next steps

Currently the project is in its first phase, in which innovative solutions are being implemented at two champion farms and soon to be expanded. “With these farmers, we set up a model with hydroponics for vegetable planting. The deep water culture helps save water for farmers. The next step is integrating solutions effectively,” Bica says. Looking ahead, Gregor envisions broader success, stating, “We want the Mekong Salt Lab to become a one-stop support centre for farmers. Farmers can come to us for practical advice, solutions, and training.” The ultimate measure of success lies in the project’s ability to sustainably improve farming yields and enhance farmers’ livelihoods.

Innovation in progress series

During the Partners for Water programme 2022 – 2027, several projects that received the Partners for Water subsidy will be followed from start to finish. Over the next few years, they will take you with them on their transformative journey. You’ll be able to gain insights into their promising solutions, innovative processes, and collaborations with local partners, as well as their struggles, challenges, and valuable lessons learned. Stay tuned and follow their journey through the Partners for Water website and our LinkedIn page!

For the first interview of the Innovation in Progress series, we speak to Saroj Yakami and Sanjeev Bhuchar.

They are part of the team currently working in Nepal’s mountainous Dhankuta municipality and Chhathar Jorpati Rural Municipality of the Dhankuta district.

The project aims to enhance natural springs while at the same time improve road infrastructure in the area.

Saroj is a water resource expert and Country Manager for MetaMeta Research in Nepal. Sanjeev works for the International Centre for Integrated Mountain Development (ICIMOD), managing the interventions on sustainable springs. For the RoSPro project he is responsible for the co-design process, intervention and spring conservation.

We meet over Teams, as they are both in Nepal. During our conversation it becomes clear that this innovative project aims to make a big impact, not only in Dhankuta, but across the Hindu Kush Himalayan (HKH) region.

Innovative approach

Saroj studied International Land and Water Management at Wageningen University. He joined MetaMeta Research in 2014 where he became involved in the Green Roads for Water initiative. “Roads affect how water flows, but water also affects roads. Most road damages are due to water. By reimagining roads as tools for landscape improvement we can manage water supplies and increase the lifespan of roads”, explains Saroj. “For the RoSPro project I coordinate the activities in Nepal, focusing on stakeholder collaboration, data collection, impact analysis and co-design processes.”

Making a bigger impact

For ICIMOD and Sanjeev this project is relevant for the entire HKH region, which spans across eight countries. “Nearly 100 million people in the region depend on springs for their water security, of which approximately 10 million in Nepal. Spring water is a lifeline, catering to drinking, domestic, and agriculture needs, but many of these sources are dwindling. This is mostly due to the rapid expansion of road networks, in addition to changes in land cover and climate.

Road development alters the spring’s natural outflow, while rock cutting disrupts the location of spring orifices. For a long time, this problem has largely gone unnoticed, which poses a significant threat to the local communities and their water resources.” In an effort to address both the depletion of springs and the rapid expansion of roads, this project combines the roadside guidelines published by MetaMeta Research and the Department of Local Infrastructure (DoLI) with ICIMOD’s hydrogeology-based spring revival protocol.

Consortium Partners

The consortium is led by MetaMeta Research. Saroj explains: “MetaMeta had been working on roadside spring protection guidelines specifically for local road network in Nepal, as part of the Green Roads for Water initiative. With the intention on integrating our work, we shared our ideas with ICIMOD, as they are experts on spring revival in the HKH region”.

Sanjeev: “For ICIMOD this was very interesting. We had been developing a protocol for spring revival as well as decision support tools for mountain hydrology. Together we could address both problems at once. FutureWater, highly specialized in water management in the HKH context, contributes to the project by creating a digital twin and decision support toolkit. Through the integration of advanced techniques and tools, the project endeavors to secure safe and dependable water provisions for mountain communities while also preserving the quality of road infrastructure and sustaining connectivity”. DoLI will oversee the implementation.

Collaborating with the local community and local partners

Sanjeev: “Our main focus from the start was getting the local community and local government involved, making sure to include women in every step of the process. Promoting gender and social inclusion is an integral part of this project. Women are a vital part of communities, but are rarely in decision making positions. We make a conscious effort to change that”. The bottom-up approach and participatory process was essential for getting the problem recognized and endorsed by local governments. Saroj: “It enabled us to incorporate valuable local knowledge in the Nature-based Solutions, with respect for local traditions”.

In the field

Since the start of the project in July 2023 a lot has been accomplished. Sanjeev begins: “We organized a kick-off to share the objective of the project with different stakeholders and started the process to co-select four roadside springs for piloting. There we conducted a hydro-geological study at field level. With the data from hydro-geological mapping, we were able to create 3D images of the area”.

Saroj adds: “We gathered a large amount of data to use in the co-design process. For example, we held household surveys and explored the area with locals to gather information about water quantity and changes in spring flows among other things. In Focus Group discussions we asked them to draw their own map of the region. This revealed all sorts of interconnections between their water supply and sources, built infrastructure, and other types of land uses. Valuable information that only locals have”.

Next step

Saroj is excited about the next phase: “At this moment, we are in the process of finalising the co-design process for the measures for improvements of both springs and roads to be implemented in four pilot sites by May 2024. We have a short time frame before the monsoon starts.”

Innovation in progress series

During the Partners for Water programme 2022 – 2027, several projects that received the Partners for Water subsidy will be followed from start to finish. Over the next few years, they will take you with them on their transformative journey. You’ll be able to gain insights into their promising solutions, innovative processes and collaborations with local partners, as well as their struggles, challenges and valuable lessons learned. Stay tuned and follow their journey through the Partners for Water website and our LinkedIn page!

“The key to a successful project? Working in a participatory way.” Calzada del Agua has addressed water security challenges in the Mexican City of Oaxaca with innovative spatial planning and BlueBloqs technology. Their feasibility study, funded by Partners for Water, has been successfully finalized. Below, consortium partner Adrian Puentes elaborates on the study’s conclusion, the project’s impact and the next steps to come.

Mexico faces the challenge of managing both floods and droughts. To address this issues, Adrian Puentes, Architect and Urban Planner at BD+P, and consortium partners FieldFactors and Centro SC, introduced a circular water system featuring BlueBloqs technology. This approach enables the local collection, purification and underground storage of rainwater, and facilitates its reuse. Their feasibility study has now successfully come to an end. We spoke with Adrian about the outcomes, the impact and the next steps to come.

Did you know FieldFactors won the Partners for Water Award?

Outcomes of the feasibility study

“An important outcome of the feasibility study is that the traditional market square in we selected in the City of Oaxaca turns out the be the perfect location for a pilot of our circular water system. It has a high gap between water demand and availability, has great potential for creating social impact and the right physical conditions for technical and legal feasibility,” says Adrian enthusiastically. He continuous: “We encountered roadblocks due to legal regulations, but we customized our final technical proposal and managed to successfully create a promising business case.” Another outcome of the feasibility study was the development of an urban toolbox by Adrian and his team. This tool helps in the decision-making process for selecting urban spaces where their BlueBloqs solution can be applied.

Local impact

“Apart from naturally recharging the area’s aquafer, the project has also a social impact on the local people,” Adrian says. He explains: “The locals working in the market have formed various factions. Before the start of the project, they often clashed over different views on managing the market square. However, the project has united them with a strong, collective desire for its success.” Their collective enthusiasm for the project comes from the fact that they often face water shortages which results in expensive water deliveries by truck. “Our solution projects to reduce their water expenses by 50% while ensuring a more reliable and consistent water supply,” explains Adrian.

Additionally, the square is set to undergo a transformation from a deteriorated, relatively unsafe area to an accessible, green space with comfortable seating, prominent water features and enhanced nighttime lighting. Adrian: “This will make it a safer and more inviting place.”

Stakeholder involvement

“Working in a participatory way is the key to a successful project,” Adrian states. “From the beginning, we have involved many stakeholders. From the area’s residents to the water sector, heritage institutes and the municipality. Not only to involve them, but also to truly understand the people, the community and their relation to water.” Adrian explains that they incorporated this by conducting formal workshops and meetings, but also through informal ways, such as cycling around and socialising with the community. Adrian: “I think trying to be humble and aim to learn from the local community at first, and then incorporate these understandings into the solution makes an invaluable difference”.

The next steps

“With the positive results of the feasibility study, we are determined to move forward with the pilot project to proof the working of the system; technically as well as socially. Both the local people and the municipality of Oaxaca strongly support the project, so the next step is to secure funding for the pilot and develop the executive plan.” Adrian is very positive about the potential for the project to scale up. He says: “There are many squares like this in Oaxaca, and more than 100,000 markets in Mexico with similar water challenges and business cases. Many municipalities have expressed their interested in our collaboration already, so the future of our BlueBloqs solution looks promising.”

Innovation in progress series

During the Partners for Water programme 2022 – 2027, several projects that received the Partners for Water subsidy will be followed from start to finish. Over the next few years, they will take you with them on their transformative journey. You’ll be able to gain insights into their promising solutions, innovative processes and collaborations with local partners, as well as their struggles, challenges and valuable lessons learned. Stay tuned and follow their journey through the Partners for Water website and our LinkedIn page!

Partners for Water LinkedIn

Ghana, like many other Sub-Saharan African countries, is experiencing extreme drought and irregular weather patterns. These climate change challenges are expected to increase and require adaptation and mitigation measures. To adapt, farmers need localised, climate smart irrigation advice. TU Delft, FutureWater, Holland Greentech and TAHMO are making this vital information accessible to local smallholders. TAHMO’s CEO and TU Delft lecturer, Frank Annor, reveals the underlying technique and processes behind their inclusive solution.

From his office at TU Delft, Frank discusses the innovative technology behind SOSIA+. As a Civil Engineer at TU Delft, he knows exactly how to implement the ideas of this elaborate service. But first, he explains the role of the other organization he works for: “TAHMO aims to develop a dense network of weather stations across Africa to enable precise weather monitoring and forecasting, and to facilitate openly accessible data. Our role in the SOSIA+ project is to provide the technology for the weather stations and moisture sensors, and to monitor and deliver real-time weather and climate data.”

 

Frank Annor

SOISA+ Technology

“Small-scale farmers receive localised irrigation advice on required water volumes and duration of irrigation from us to enhance water security and improve crop production,” Frank explains. “We’ve combined TAHMO’s data-collection technology with an algorithm created by FutureWater. Additionally, we offer training on the use of this system through the TU Delft partnership with Ghanaian universities and knowledge institutes and the Holland Greentech Ghana team.”

The irrigation advice is communicated through various channels, including an app, text messages, WhatsApp and in person. Frank explains: “Effective communication channels are crucial because we rely on farmers to collect and share data from their farms. This allows us to validate our advice and tailor it to the unique conditions of each farm. That’s why we created a modular communication system. The channels we use and the information we provide are based on the farmer’s preference and skills.”

An accessible service

“This technology stands out because it provides highly localised information that is directly applicable to the farmer’s field,” Frank explains. “Typically, such advanced technology is only accessible to large-scale farmers. However, we’ve developed a concept that allows multiple individual smallholder farmers to purchase the service collectively. Moreover, we’ve employed cost-effective, low-maintenance technology and a modular system that can be scaled to suit the farm’s size and the farmer’s level of expertise.”

Co-creation

“One of the key success factors of SOSIA+ is that we’ve developed the service and technology in collaboration with the farmers via an iterative process,” Frank reflects. “Our starting point was to discuss their needs and demonstrate how the system’s features could meet those needs. Then we created a mock-up, returned to the farmers for feedback, adjusted accordingly, and repeated the process. This approach significantly improved the usability and adoption of the service. It truly has been an invaluable lesson for developing solutions that genuinely meet the users’ needs.”

 

Scalability

Both Holland Greentech and TAHMO have teams operating in over 20 African countries. Frank explains, enthusiastically: “We already have the necessary connections in various areas, and the system’s modular design is great for scalability. The modularity ensures the technology is easily adaptable to meet the needs of new users in different locations.” He continues: “Challenges exist, such as establishing a viable business model. However, the funding from Partners for Water allows us to test our business model and value proposition in the pilot project and to develop a sound strategy on how to sustain the service moving forward.”

 

Innovation in progress series

The Partners for Water 5 programme (2022 – 2027) follows several projects that received the Partners for Water subsidy from start to finish. Over the next few years, these projects will take you on their journey of testing the feasibility or application of innovative solutions to enhance water safety and water security abroad. You’ll be able to gain insights into their processes, collaborations with local partners and their potential solutions; as well as their struggles, challenges and their lessons learned. Stay tuned via the Partners for Water LinkedIn page!

Southern Africa is suffering from severe drought. Together with Hydrologic and Emanti, research & consulting company FutureWater is working on an operational service that provides timely and easy access to water availability and demand across the entire Maputo River and the Black Umbeluzi River basins.

In our ‘Innovations in Progress series’, FutureWater’s water resources engineer Evelyn Aparicio Medrano tells us more about the underlying models for the GLOW project and the great power of collaboration

‘In the GLOW pilot project, we clearly show where the demand for water in the region is greater than the supply, from day-to-day to seasonal trends. On this basis, the local authorities in Mozambique, Eswatini and South Africa can make quicker and easier decisions about water management and water security in the short and the longer term.’ explains Evelyn.

One decision support system

Within the GLOW consortium, the FutureWater team – which, along with Evelyn, consists of hydrologists Tijmen Schultz and Sergio Contreras – is responsible for the models behind the forecasts. Evelyn: ‘Our role is to bring all the pieces of information together: the weather forecast, the size of the catchments, but also the availability of and demand for water at different locations in the delta. In order to do this, we use tried and tested tools. We bring all the collected data together in one decision support platform called HydroNet. This platform provides all stakeholders with an overview of the data, presenting actionable information through a dashboard. The coherent combination of the different technologies is one of the features that makes this project innovative and unique.’

The decision-makers can also run different scenarios. Evelyn: ‘GLOW is and will continue to be a forecasting service, so you always have to deal with the uncertainties in your models. This is why we offer the possibility to run several scenarios. These scenario’s predict different outcomes based on the available data and possible decisions. It enables water managers to make more considered choices for the short term and longer term by providing them a comprehensive understanding of the possible consequences of their decisions.’

 

Evelyn Aparicio Medrano

Across borders

Another feature that makes the GLOW project unique is that the river basin from the pilot crosses three borders. Evelyn: ‘Collecting information in Mozambique, Eswatini and South Africa and bringing it all together gives us a much clearer overview. Water managers from the three countries work together to share information and make decisions that are primarily in the interest of the entire catchment – and not just for their own area. We make this transparent and clear via GLOW, so that all parties involved can use the right information. All the stakeholders have access to the data from the other countries. It’s one system. I think that makes it a beautiful and innovative approach.’

User-centred

Users are at the heart of the GLOW project. Evelyn: ‘We only started modelling after the first discussions with the different authorities in the three countries involved. Our South African partner in the GLOW consortium Emanti has all the expertise and tools required in order to bring to light this basic information. We can of course come up with 10,000 wonderful things to model and show them in our dashboard, but ultimately the question is: how does our technology help local decision-making or discussions about water management and water security? Which data do our stakeholders need in order to make decisions? We seek continuous input from the stakeholders. This is very important for the further development of the dashboard, and it’s how stakeholders themselves become ambassadors for the system.

The challenges

There are also challenges in this pilot phase. Evelyn: ‘For our models we would really like to work with data series with around 20 consecutive years, but they’re very hard to find. With a bit of luck, you have a few years of data here and there. We need to collect all this data and analyse it, in order to be able to use it. But the biggest challenge is bringing the stakeholders together. For example, we had organised a kick-off for all three countries simultaneously. But in the end, we had to settle with a separate kick-off in each country. Now we’re also working hard on inviting all the stakeholders for the Renko Conference in November, where we will demonstrate the GLOW-dashboard and its capabilities.

Further roll-out

Evelyn is positive about the further roll-out of the GLOW project: ‘We’ve already gained a lot of experience as a consortium. FutureWater had already worked with both Hydrologic and Emanti on other water projects. We know each other’s unique expertise and what the other party can contribute to a project. Now we’re working hard to ensure that data can be exchanged even more effectively and that our system can communicate with other platforms. We also have an increasingly better idea of what information the different stakeholders need.

Find out more about the GLOW pilot

Combating water scarcity by integrating circular water systems into a bustling Mexican market. This requires not only innovative technology, but also clever spatial design and a deep understanding of the political and social context. Calzada del Agua meets that requirement.

Their feasibility study, funded by Partners for Water, is coming to a successful conclusion. The key to its success? “Combining each other’s strengths.”

It’s a rainy afternoon when Karina Peña sits down in her office in the Dutch city of Delft. The glass wall and open metal shelving reveal a glimpse of vibrant activity. The innovative start-up’s CEO and co-founder explains: “Here at FieldFactors, we’re producing unique modular systems to make locations or facilities water-neutral and climate-resilient – we call them ‘BlueBloqs’. They consist of products for rainwater purification and control and monitoring that work together seamlessly”. Karina strongly believes in the power of working together – and not just when it comes to products. “We’re the technical partner of the consortium behind Calzada del Agua and together we aim to tackle Mexico’s severe water scarcity.”

Karina Peña by Guus Schoonewille

Creating synergy

The project benefits from the expertise shared by each consortium partner. For instance, while FieldFactors provides BlueBloqs, urban planning firm Beccan Davila + Puentes (BD+P) handles the spatial design, integrating FieldFactors’ technology into regional settings. Additionally, the Mexican consultancy agency Centro SC provides valuable support by managing the regulatory context and relevant stakeholders. “It’s a fruitful, complementary collaboration,” Karina says. “Since we had never worked together before, we had to get to know each other first. How could we create synergy? Clear communication turned out to be crucial – for example, to discuss what each of us could bring to the table and what we expected from one another.”

Bridging differences

The consortium adopted a proactive approach in order to understand the full implications of the partners’ differences and align their perspectives. “From the start, we defined a shared vision and project goals identifying the best ways to support each other in pursuing those goals.” This meant, for instance, combining each other’s risk perceptions. “Service providers, who mainly invest in work hours, perceive other risks than a technology provider like us”, Karina explains. “FieldFactors invests in materials and needs to deliver a product overseas. And we care about the future maintenance of the BlueBloqs.”

Bluebloq circular water system

Sharing experience

The differences between the three organisations are not just a challenge. They are also extremely valuable. “We wouldn’t be working on this project right now if it weren’t for the collaboration with the BD+P and Centro SC”, Karina says. “At FieldFactors, we had no prior experience in Mexico. So, we lacked local networks, as well as a thorough understanding of the institutional and regulatory context there. Our consortium partners had those networks and knowledge of the local context. Their extensive experience in Mexico is one of the main factors contributing to the potential success of the Calzada del Agua project.”

Stakeholder engagement

“We must actively involve local stakeholders if we want our project to have real and lasting impact”, says Karina. “From the local government to the water authority and from the water utility to end-users. They need to be on board.” That’s why the consortium has held numerous workshops with these stakeholders. “In Mexico, involving the authorities and end users is crucial for projects like ours to succeed. If you don’t engage with the local authorities from day one, you won’t make any progress. To create ownership and interest, it’s critical that they take part in creating the solutions. That’s why we asked them: what are your needs? How do you think a rainwater reuse system can work?’ We spent time genuinely listening to their input and that was reciprocated with enthusiasm and support from them!”

Stakeholder engagement in the Mexican city of Oaxaca

What’s next?

With the feasibility testing coming to an end, the consortium partners now find themselves at a time of realignment. “Having identified a receptive market, we are now discussing how to implement the BlueBloqs technology in Mexico and how we can continue working together. In the coming period, we will explore how to accomplish this effectively and what is required to grow as a consortium.

Sign up for the newsletter